ד"ר רענן הר-זהב
יונתן ברמן
אורי אדלשטיין
שחר אבימור
אודי נוימן
שני מנחם
גל קנר אלימי
עמוס לאור

Dr. Rhanan Har-Zahav, J.S.D., LL.M., LL.B. Yonatan Berman, LL.M., LL.B. Uri Edelstein, LL.B., B.A. Shahar Avimor, LL.B. Udi Neuman, LL.M., LL.B. Shani Menachem, LL.B. Gal Kaner Alimi, LL.B. Amos Laor, LL.M., LL.B.

7 באוגוסט, 2019

לכבוד גב׳ רעות רבי הממונה לפי חוק אוויר נקי המשרד להגנת הסביבה רח׳ כנפי נשרים 5 ירושלים

שלום רב,

$^{\prime\prime}$ הנדון: הערות המועצה המקומית זכרון יעקב לטיוטת היתר הפליטה לאסדת הגז

בהתאם לסעיף 21(ה) לחוק אוויר נקי, תשס״ח-2008 (להלן: חוק אוויר נקי), להלן הערות המועצה המקומית זכרון יעקב לטיוטת היתר הפליטה לאסדת הגז ״לוויתן״. יצוין כי הערותינו מתייחסות גם לבקשה להיתר פליטה, שכן טיוטת היתר הפליטה מבוססת על הבקשה.

כפי שיוסבר להלן, הבקשה להיתר פליטה וטיוטת היתר הפליטה אינן מקיימת במלואן את הוראות הדין, ועל כן אין לתת על בסיסן היתר פליטה.

ככל שלמרות האמור יוחלט לתת היתר פליטה למתקן, אנו סבורים שחובה להכניס בו תיקונים כמפורט להלן. ללא תיקונים אלה, ההיתר יהיה מוטה באופן ברור לטובת בעל מקור הזיהום.

יודגש כי אין באמור בהערות שלהלן כדי לגרוע מעמדת מרשתנו הנוגעת לעצם מיקומו של המתקן, ואין בהן כדי לגרוע מכל טענה שעשויה מרשתנו להעלות בעניין זה.

א. חוות הדעת המצורפת להערות

בפתח הדברים יצוין כי יחד עם מסמך זה מוגשת חוות דעת מפורטת שנכתבה על ידי ד"ר אמנון בר-אילן וד"ר שארי ליביקי מחברת Ramboll, חברת הנדסה בעלת פריסה עולמית ובעלת ניסיון רב בתחומי הסביבה והבריאות. יש לראות את האמור בחוות דעתם כחלק בלתי נפרד מהערות המועצה המקומית.

2. יצוין כי דו״ח Ramboll נכתב ביחס לבקשה להיתר פליטה וטרם פרסום טיוטת ההיתר. יחד עם זאת, מרבית ההערות בדו״ח עודן רלוונטיות גם בשלב זה.

העתק חוות הדעת מצורף ומסומן א׳.

<u>ב. הערה כללית</u>

3. בטרם נתייחס לגופם של דברים נציין, כי בחינה מקצועית של הבקשה להיתר פליטה ושל טיוטת ההיתר, מלמדת שספק רב אם הן מקיימות את העקרונות המהותיים של חוק אוויר נקי והתקנות שהותקנו מכוחו. נזכיר כי בהתאם לסעיף המטרות של חוק אוויר נקי (סעיף 1), העקרון הבסיסי העומד ביסוד החוק והוראותיו הוא עקרון הזהירות המונעת:

ייחוק זה מטרתו להביא לשיפור של איכות האוויר וכן למנוע ולצמצם את זיהום האוויר, בין השאר על ידי קביעת איסורים וחובות בהתאם לעקרון הזהירות המונעת, והכל לשם הגנה על ידי אדם, בריאותם ואיכות חייהם של בני אדם ולשם הגנה על הסביבה, לרבות משאבי הטבע, המערכות האקולוגיות והמגוון הביולוגי, למען הציבור ולמען הדורות הבאים ובהתחשב בצורכיהם."

4. נוכח האמור בסעיף המטרות, יישום החוק ופרשנותו חייבים להיעשות לאורו של עקרון זה. כאמור בפסיקה,

"עקרון הזהירות המונעת נועד להתמודד עם הקושי שבפער בין הידע הקיים בזמן נתון, לבין הנזק הפוטנציאלי האדיר והלא ודאי שעלול להיגרם מפעילות כלשהי, אם לא ינקטו לגביה אמצעי זהירות ראויים. העיקרון מאפשר לרשות (המחוקקת או המבצעת) לנקוט בצעדים שתכליתם מניעת הקטסטרופה, וזאת כאשר נשקף איום משמעותי לנזק נרחב בלתי הפיך, אפילו הוא בהסתברות נמוכה וגם כאשר אין ודאות מדעית מוכחת שהנזק אכן יתממש."

בגייץ 466/07 **חייב גלאון נ' היועץ המשפטי לממשלה**, פייד סה(2) 44, פסקה 34 לפסק דינו של השופט (כתוארו אז) מלצר (2012).

- 5. בענייננו מדובר באסדת גז שאמורה לטפל בכמות עצומה של גז ושל חומרי לוואי המיוצרים בהליך הטיפול, והיא מצויה במרחק קטן מן החוף וממקומות מגורים (ביחס לגודלה, היקף פעילותה והמשמעויות הנגזרות מכך). בהינתן האמור, ניתן לאשר את הבקשה רק אם היא נוקטת באמצעים ובשיטות הקפדניים ביותר, ומבטיחה ברמת ודאות או מובהקות סטטיסטית מניעת אירועים של פגיעה בסביבה הימית והחופית, באוויר ובבני אדם. עקרון הזהירות המונעת, העומד ביסוד הוראות החוק, מחייב לדחות בקשות להיתר פליטה, בכל מקרה שבו לא מתקיימת ודאות או מובהקות סטטיסטית שכזו.
- 6. כפי שנראה, בענייננו הבקשה להיתר פליטה וטיוטת ההיתר רחוקים מלהבטיח את קיומה של הוודאות הנדרשת. להלן נעמוד על היבטים מרכזיים הנוגעים להיתר, וזאת מבלי לגרוע מן האמור בשני הדו״חות המצורפים.

<u>Turbo בשילוב עם FGRU ג. אי עמידה בתנאי הדורש שימוש בטכניקה המיטבית הזמינה – שימוש במערכת Expander</u>

- 7. כבר בבסיסן, הבקשה להיתר פליטה וטיוטת היתר הפליטה הן פגומות, לאור הטכניקה שנבחרה במסגרתן. בהתאם לסעיף 18(ב)(1)(ה) לחוק אוויר נקי, תשס״ח-2008 (להלן: חוק אוויר נקי), בקשה להיתר פליטה חייבת לכלול את ״<u>הטכניקה המיטבית הזמינה</u> המוצעת ליישום במקור הפליטה, למניעה או לצמצום מרבי של זיהום האוויר והשיקולים לבחירתה, בהתחשב, בין השאר, ביתרונותיה הסביבתיים ובעלויותיה לעומת חלופות אחרות.״
 - 8. סעיף 2 לחוק אוויר נקי מגדיר את "הטכניקה המיטבית הזמינה" כך:
 - "הטכנולוגיה והאמצעים האחרים המתקדמים ביותר, המשמשים בתכנון, בבניה, בהפעלה ובתחזוקה של מקור פליטה ושל פעילות המתבצעת בו, או טכנולוגיה ואמצעים כאמור שייעודם מניעה או צמצום של זיהום האוויר, המוספים למקור פליטה, והכל ובלבד שמתקיימים בהם כל אלה:
 - (1) יישומם מביא למניעה או לצמצום מרבי של פליטת מזהמים לאוויר ממקור הפליטה ולמזעור הפגיעה בסביבה בכללה;
 - (2) הם **בשלב פיתוח הניתן ליישום מבחינה טכנית וכלכלית, במקור הפליטה או בפעילויות המתבצעות בו, או במקורות פליטה או בפעילויות מסוגם באותו מגזר,** בהתחשב ביתרונותיהם ובעלויותיהם של הטכנולוגיה והאמצעים כאמור;
 - (3) הם זמינים באורח סביר אף אם טרם יושמו בישראל בפועליי
 - \cdot . בהתאם לסעיף 20(ב)(3) לחוק אוויר נקי, בבואו לשקול מתן היתר פליטה, על הממונה לשקול, בין היתר \cdot
 - ייקיומן של תכניות פעולה לנקיטת אמצעים למניעת זיהום האוויר ולצמצומו וליישום מסניקה המיטבית הזמינה של מגיש הבקשה ויכולתו לעמוד בדרישות תכניות כאמור ;יי הטכניקה המיטבית הזמינה
- 10. הוראות משלימות מצויות בתקנות אוויר נקי (היתרי פליטה), תשייע-2010 (להלן: תקנות אוויר נקי), שם נקבע כי "בקשה להיתר תכלול את הטכניקה המיטבית הזמינה המוצעת במסמכי הייחוס אשר תביא להפחתה המרבית של פליטת מזהמים לאוויר מבין כל הטכניקות המיטביות האפשריות" (תקנה 14(א)) וכי "בקשה להיתר תכלול תכנית ליישום הטכניקה המיטבית הזמינה המוצעת כאמור בתקנה 14" (תקנה 15(א)).
- 11. כפי שעולה מדו״ח חברת Ramboll, מערכת ה-Ramboll, שבה אמור להיעשות שימוש, אינה עומדת בתנאי החוק הדורשים שימוש ב״טכניקה המיטבית הזמינה״. גם הבקשה להיתר אינה שימוש, אינה עומדת בתנאי החוק הדורשים שימוש ב״טכניקה המיטבית, ואף אינה כוללת סקירה של כוללת אסמכתאות המצביעות על כך שמדובר בטכניקה הזמינה המיטבית, ואף אינה באופן שיש בו כדי ללמד כי הטכניקה שנבחרה היא הטכניקה הזמינה המיטבית הזמינה.
- 12. מהנדסי Ramboll עומדים על כך שיש לבחון בקפידה את אמינותה של מערכת זו בהקשר הנוכחי. זאת לאור העובדה, שמדובר במערכת שנעשה בה שימוש במתקני נפט, אך כותבי הדו"ח מעולם לא נתקלו בה במתקני גז. הדברים באים לידי ביטוי בעמי 4 לדו"ח, שם נכתב:

"We recommend the Ministry of Environmental Protection or other regulatory agency to closely monitor the Fuel Gas Recovery Unit system reliability. Although we have seen systems like this work for oil treatment systems, we have never seen them deployed for gas systems. This system is critical to the destruction of pollutants and the processing of waste gas throughout the life of the project;"

- 21. בהתאם לטיוטת היתר הפליטה, תפעל באסדה גם מערכת Turbo Expander. למיטב ידיעת המומחים עמם נועצנו, שילוב של מערכת FGRU עם מערכת Turbo Expander אינו קיים באסדות גז בעולם, ודאי לא כאלה בעלות תפוקה גבוהה כמו אסדת לוויתן. ודאי שאין מדובר בשילוב נפוץ. הדברים אף עולים מפורשות מדברי מהנדס נובל אנרג׳י בכנס, שהתקיים בעמק חפר.
- 14. עוד יצוין כי כל אחד משני הרכיבים הנ״ל, כשלעצמו, אינו מספיק להפחתת הפליטות באופן שעליו הצהיר מבקש ההיתר, ותקוות מבקש ההיתר כי השילוב יעבוד תלויה בכך ששני הרכיבים יעבדו יחד בצורה מושלמת. מדובר בניסוי תקדימי בשילוב טכנולוגיות, שיעילותו לא הוכחה מעולם, ודאי לא בתפוקה כה גבוהה.
- 15. יוער, כי במסגרת ההליכים שהתקיימו במועצה הארצית לתכנון ובניה בעניין תמ״א 37/ח, המועצה נמנעה מלאמץ פתרון של טיפול בגז במודל של FPSO, וזאת בנימוק לפיו לא קיים די ניסיון לטיפול בגז במודל זה, באסדה בסדר הגודל הרלוונטי למאגר לוויתן. הסבר זה הובא בפני המועצה הארצית גם בשנת 2017 בעת הדיון באסדות הטיפול בגז ממאגרי כריש ותנין. את העמדה האמורה יש להחיל באופן אחיד, ומטעם זה להימנע ממתן היתר פליטה לבעל מקור הפליטה הנסמך לראשונה על שילוב לראשונה של מערכת FGRU עם Expander
- בהעדר ניסיון בשימוש במערכת FGRU במתקני גז, מתן היתר פליטה המבוסס על מערכת זו אינו עולה בקנה אחד עם הוראות חוק אוויר נקי בדבר הטכניקה המיטבית הזמינה ועם עקרון הזהירות המונעת. נזכיר, כי אסדת הגז אמורה לטפל במשך עשרות שנים בכמויות גדולות ביותר של גז ושל חומרי לוואי שייפלטו בהליך הטיפול, וכי היא מצויה במרחק קטן יחסית מן החוף וממקומות יישוב. לא זה המקום לבצע ניסויים בשיטות שלא נוסו מעולם במתקנים מן הסוג האמור.

ד. נדרש לנטר באופן רציף את כלל המזהמים המסרטנים בשל ההשלכות הרחבות והכבדות על בריאות הציבור

2015. בנזן (Group 1) לבני אדם על ידי (MVOC בנזן הוגדר כחומר מסרטן וודאי (Group 1) לבני אדם על ידי $(C_{\delta}H_{\delta}$ Benzene) ווהו ראיות (Carlos-Wallace, Zhang, Smith, Rader). בנזן מהווה גורם מבוסס ללוקמיה בקרב מבוגרים, וזוהו ראיות לקשרים בין לוקמיה של הילדות לבין סוגי חשיפות שונות לבנזן (Steinmaus, 2015 & Steinmaus, 2015). עליה ברמת החשיפה לבנזן במהלך ההיריון, עלולה לפגוע בהתפתחות העובר ולגרום למשקל לידה נמוך (Chang et al., 2011). בעקבות תאונה, שארעה בשנת 2010 בבית זיקוק בטקסס נפלטו כמויות ענקיות כ-250,000 קייג של כימיקלים רעילים לאוויר, כולל כ-8,500 קייג בנזן. בעקבות מחקרים על ההשפעה על הבריאות בקרב הילדים אשר נחשפו, נמצא, שהמדדים ההמטולוגיים וההפטולוגיים של אלו השתנו משמעותית לרעה וזאת ביחס לילדים שלא נחשפו. כך גם לגבי פורמאלדהיד.

- 18. חרף העובדה, שמדובר בפרויקט אנרגיה חדשני, מורכב ובעל השלכות נרחבות על בריאות הציבור, עיון בפרוטוקולים של מוסדות התכנון (המועצה הארצית, הוולנת״ע וועדת העורכים) משנת 2009 ועד היום, מעלה, כי לא נדונה ההשפעה על בריאות הציבור, וזו לא היוותה שיקול בתהליך בחירת החלופה לטיפול בגז.
- 19. לאחרונה, במסגרת בג"ץ 4189/18 מועצה מקומית טוראן נ' ממשלת ישראל ניתן ביום 27.2.2019 צו על-תנאי שהורה לרשויות המדינה ליתן טעם מדוע לא תוחזר תמ"א 14/ב לדיון במועצה הארצית לתכנון ובניה, וזאת משום ש"לא נקבעה בתוכנית מתודולוגיה לבחינת השפעות בריאותיות שייגזרו ממנה, ואף לא הונח לפני המועצה עובר לאישור התכנית מסמך הסוקר את ההשפעה הבריאותית הפוטנציאלית של התוכנית".
- 20. כך שאין ספק, שבהעדרה של בחינת השפעות בריאותיות על הציבור במסגרת תמ״א 37/ח ולאור החלטה זו, נדרשת ולו הגנה מינימלית על בריאות הציבור באמצעות ניטור רציף על מזהמים מסרטנים.
- 21. חשוב לציין כי לא די בניטור נקודתי ביבשה, שכן נדרשת תמונה מלאה, שלצורך קבלתה נדרש ניטור בים וביבשה במקביל. עוד יצוין כי בענייננו נדרש ניטור אפקטיבי נוכח מיקום האסדה בים, המקשה על יכולת הרגולטור לבצע פעולות פיקוח, כמו ביקורות פתע המקובלות במתקנים ביבשה.
 - 22. כמו כן חשוב להדגיש כי אין די בדיגום, שכן עוצמת הפליטות אינה קבועה ורצופה בכל רגע נתון.

ה. העדר שלב הרצה ותחילת ניטור רציף במועד מאוחר

- 23. בהתאם לסעיף 14(ה) לטיוטת היתר הפליטה, בעל ההיתר יקיים **ניטור רציף** לארובות ולמחממים וביחס לרכיבים מזהמים מסוימים רק <u>החל מיום 30.6.2020</u>. בנוסף, מן הטבלאות בעמ*י 20-24* לטיוטת ההיתר עולה שעד יום 29.9.2020 יתבצע לרכיבים אלה דיגום אחת לחודש, ולאחר מכן <u>אחת לשישה חודשים</u>.
- 24. סעיף 22(ב) לחוק אוויר נקי קובע כי היתר פליטה יכלול הוראות הנוגעות ל״חובות ניטור פליטה, דיגום ודיווח, לרבות הדרכים והמועדים לביצועם, ודרכים לאיסוף, לעיבוד, לתיעוד ולהערכה של הנתונים״. כמו כל סמכות מינהלית, גם את הסמכות לקבוע חובות ניטור, דיגום ודיווח יש להפעיל בסבירות. כמו כן, על רקע האמור לעיל, חובה זו אמורה להיקבע בהתאם לעקרון הזהירות המונעת.
- 25. אלא שתדירות תקופת הניטור, כפי שנקבעה לעיל, אינה עולה בקנה אחד עם עקרונות הסבירות והזהירות המונעת. ראשית, משמעות האמור למעלה היא שהניטור הרציף יחל רק כחצי שנה לאחר תחילת הייצור. עמדתנו היא שאת הניטור הרציף לאותם חומרים, שנקבע שינוטרו באופן רציף החל מיום 30.6.2020, יש לנטר באופן רציף מתחילת תקופת פעילות האסדה.
- 26. שנית, הבידול בין שלב ההרצה, שבו נעשה דיגום אחת לחודש, לבין השלב שאחריו, שבו נעשה דיגום אחת לחצי שנה, אינו מספיק. מומחים שחיוו דעתם על הוראות אלה בטיוטת ההיתר, התפלאו להיווכח שטיוטת ההיתר מאפשרת, בתוכנית כה מורכבת וראשונית, לגשת לייצור התדיר ללא שלב הכנה וייצוב נפרד ומתנה. בהתאם, עמדת המומחים היא כי יש לתכנן וליישם שלב הרצה ולבחון בו את עיקרי ההיפותזות לתכנית, הנשענות על הערכות וחישובים. שלב זה יאפשר לייצב את תכנית הייצור, כך שתתאים לחומרים ולמדדים הפיזיקאליים

האמיתיים ולא לאלו המבוססים על הערכות בלבד. כניסה מיידית לייייצור סדרתייי תקשה על המשרד להגנת הסביבה ועל בעל ההיתר לאמץ שינויים, שכן הדבר יתנגש עם התחייבויות ייצור קיימות.

.27 בהתאם, ככל שיינתן היתר פליטה, נבקש כי תיקבע תכנית מקדימה נפרדת – תכנית הרצה.

ו. התאמה של הוראות ההיתר לסוג הקונדנסט

- 28. בהתאם לאמור בתנייס הימי למתקן לוויתן, סיווג הקונדנסט במתקן הוא 43.2 API. בהתאם, אנו מניחים שטיוטת ההיתר מבוססת על אנליזות של קונדנסט בסיווג זה.
- 29. ואולם, ממסמכים שהוגשו לאחרונה על ידי מבקש ההיתר, עולה שבפועל סיווג הקונדנסט הצפוי להיות מופרד באסדה תואם יותר לנפט בינוני/כבד (29-30 API). בהתאם, יש לבסס את ההיתר על סוג קונדנסט עדכני זה, נאביין שנעשו אנליזות מתאימות לחומר זה, ככל שאכן נעשו אנליזות כאלה.
- 30. נבקש לוודא כי נחה דעתם של מומחי המשרד להגנת הסביבה שתשתיות ונהלי הטיפול בזיהום מסוגלים לבצע את ייעודן כמפורט בטיוטת ההיתר, גם בהינתן סיווגו של הקונדנסט, שאינו תואם את הסיווג הקבוע בתנ״ס הימי.
- 31. בחלק ניכר מהדגימות שהועברו מצוין "Seals: None". התקן מחייב דגימות חתומות, בשל חשש כי מרכיבים נדיפים (חלקם מסרטנים ודאיים) יתנדפו לאוויר בטרם הגעת הדגימה למעבדה (לגבי חלק מהדגימות מדובר בתהליך שלוקח מספר שבועות) ויפגעו באמינות התוצאות. נבקש הבהרות בנושא זה הכיתוב הנ"ל על הדגימות.

ז. חוסר במידע אודות פעולות בכלל מצבי ההפעלה הרלוונטיים

- 32. עיון בטיוטת ההיתר מעלה, שתקרת היקף המזהמים אינה כוללת סך כל מצבי ההפעלה בתפעולה של האסדה. כך למשל, זו אינה כוללת את שלב ההרצה ואת שלב התחזוקה ותקלות, המתרחשות מפעם לפעם.
- 33. סעיף 18(ב)(1)(ד) לחוק אוויר נקי דורש שהבקשה להיתר פליטה תפרט את המזהמים, סוגם, כמותם והשפעתם על הסביבה, וזאת, בין השאר, "במצבי הפעלה שונים ובתנאי הפעלה לא אופייניים, ובכלל זה התנעה וכיבוי של מיתקנים, דליפה, עצירות רגעיות והפסקת פעילות".
- 34. תנאי זה אינו מתקיים. הבקשה להיתר פליטה וטיוטת היתר הפליטה אינן מתייחסות באופן קונקרטי לפעולות MSS Maintenance, Startup and Shutdown) תחזוקה ולפעולות של אתחול, הכוללות התנעה וכיבוי (activity). הבקשה להיתר מתייחסת באופן כללי לעוצמת ומשך הפליטות שייווצרו במהלך חלק מפעולות אלה, אך אין אסמכתאות לגבי נתוני הפליטות באותם אירועים.
- 35. מאחר שהיקף וקצב הפליטות במצבי הפעלה לא שגרתיים אלו עצום, ובד בבד השפעתם על בריאות הציבור היא קריטית, יש לקבוע, כי התקרה המצוינת בטיוטת ההיתר כוללת את **מנעד מצבי ההפעלה, ובכללן תקלות**.

- 36. פעולות של תחזוקה, התנעה וכיבוי של המתקן הן גורם התורם משמעותית להגדלת כמות המזהמים. לכן מדובר בחסר משמעותי, הפוגע ביכולת להעריך באופן ריאלי את היקף וקצב פליטת המזהמים. ללא השלמת חסר זה, אי אפשר לתת היתר פליטה.
- 37. יצוין שממש לאחרונה בית המשפט העליון עמד על חשיבותה של הבחינה הסדורה של פוטנציאל הנזק של מתקן מזהם, ובכלל זה במצבי השגרה והקיצון :

"בצד דברים אלה יש לחדד, לא דין מתקן ייצור, זיקוק ועיבוד של חומרים בעלי פוטנציאל סיכון סביבתי כדין משרדים לעובדים, מחסני ציוד וכדומה, שהשפעתם על הסביבה – מטבע הדברים – שונה בתכלית. כאמור, ככל שמדובר בבניה שלה השלכות תכנוניות רחבות על סביבתה, תידרש רמת תכנון מפורטת יותר. כאשר ענייננו בסוג המתקנים הראשון, קרי מתקנים שהשפעתם על הסביבה ניכרת, לא ניתן להשלים עם קביעה גורפת בתכנית המתירה את הקמתם מבלי לבחון באופן סדור את הצורך בתכנון מפורט שיידרש למאפייני המתקן הקונקרטי, זיהום האוויר הכרוך בהפעלתו, פוטנציאל הנזק שלו באירועי קיצון וחשיפתו האפשרית של הציבור למפגעים עקב פעילות המתקן – בשגרה בחירום."

עעיימ 2605/18 **עיריית חיפה נ' המועצה הארצית לתכנון ובניה**, פסקה 64 (28.7.2019).

38. בהעדר התייחסות מספקת למנעד מצבי ההפעלה, אין מקום לאשר את הבקשה להיתר פליטה.

ח. על כמות הפליטה המותרת לכלול את הפליטה בעת תקלות ובמצבי חירום

- 39. בהתאם לסעיף 3(ה)(1) ו-(2) לטיוטת ההיתר, פליטה שמקורה בתקלות מן הסוגים המפורטים בסעיף 8 לטיוטה, כמו גם פליטה שמקורה בפעולות הרצה ראשונית של האסדה ופעולות תחזוקה, שאושרו מראש, לא ייחשבו לחריגה מערכי הפליטה המותרים.
- 40. בקביעה זו גלומה הסכנה הפוטנציאלית הגדולה ביותר. היקף וקצב הפליטה בעת תקלה ובעת פעולות תחזוקה גבוה בסדרי גודל משמעותיים מהיקף הפליטה בשגרה. הנזק הבריאותי המצטבר אינו מבחין בין תקלה, פעולת תחזוקה וזיהום שגרתי. יצוין שמודל זיהום האוויר שפורסם בבקשת היתר הפליטה בדק רק מקרי שגרה, שם קצב הפליטה קטן באופן משמעותי מקצב הפליטה בזמן תקלות, שכלל לא פורסם מודל ביחס אליהן.
- .41 כאמור לעיל, בהתאם לסעיף 18(ב)(1)(ד) לחוק אוויר נקי, על בקשה להיתר לכלול מידע לגבי סוג וכמות המזהמים "במצבי הפעלה שונים ובתנאי הפעלה לא אופייניים". בהתאם, גם על היתר הפליטה להביא בחשבון מצבים לא אופייניים. החרגת פליטות בעת תקלות או פעולות תחזוקה מכמות הזיהום המותרת פותחת פתח בלתי מוגבל לחריגות, אשר מעקרות מתוכן את המגבלות על חריגות בשגרה, ועלולות לחרוג מהן באופן משמעותי ביותר.
- 42. בהתאם, ככל שיינתן היתר פליטה, הרי שקודם למתן ההיתר יש לפרסם מהי תכנית התחזוקה ומה הם מצבי הקיצון האפשריים, ולהביא אותם בחשבון במסגרת המגבלות על כמות הזיהום המותרת על פי ההיתר.

ט. העדרה של הגבלה על כמות המזהמים שהמתקן יכול לפלוט בעקבות תקלות

- 43. סעיף 8 לטיוטת היתר הפליטה מטיל מגבלות על <u>משך הזמן</u> שניתן לחרוג מהיקף הפליטה המותר בעת תקלה, אולם אינו מטיל מגבלות על <u>כמות הזיהומים</u> החורגת המותרת במהלך תקלה או תקלות.
- 44. בהתאם לסעיף 8(א) לטיוטה, בעת תקלה הגורמת או עלולה לגרום לחריגה מערכי הפליטה, רשאי בעל היתר הפליטה להמשיך בפעילות המזהמת למשך 24 שעות. סעיף 8(ב) מתיר לתת אישור להמשיך בפעילות המזהמת אף יותר מ-24 שעות, וקובע כי ניתן להתיר עד 120 שעות מצטברות בשנה של פליטה החורגת מערכי הפליטה בשל תקלה.
- 45. עמדת מרשתנו היא כי לא די בקביעת מגבלות זמן על זיהום החורג מערכי הפליטה המותרים, וכי יש לקבוע גבול עליון לכמות הזיהומים בעת תקלה. מדד של זמן הוא כמעט חסר משמעות, שכן חריגה מערכי הפליטה של המותרים עשויה להיות מזערית ועשויה להיות עצומה. המומחים עמם התייעצנו מסרו לנו שכמות הפליטה של מזהמים מסוכנים, בהם בנזן, תרכובות NMVOC ותרכובות אורגניות אחרות בעת תקלה, עלולה לעבור את הכמות השנתית המותרת, אפילו כאשר משכה של התקלה אינו ארוך.
- 46. בהתאם, ככל שיינתן היתר, נבקש לקבוע כמות מקסימלית של זיהום, שמעבר לה לא ניתן יהיה להפעיל את המתקן בעת תקלה המביאה לחריגה מערכי הפליטה המותרים.
- 47. נוסף על האמור, סעיף 8(א)(3) לטיוטת היתר הפליטה מתיר לממונה, בנסיבות מסוימות, להורות על הפסקת הפליטות בעת תקלה. ככל שיינתן היתר, אנו מבקשים כי בסעיף זה ייקבע שהממונה יהיה רשאי לעצור את פעילות הפליטות, ואם נדרש, לעצור את הייצור בוכנית מקרים ותגובות מוכנה מראש, הכוללת אמצעי בקרה, ושתהיה נגישה לציבור, על מנת שהממונה יהיה משוכנע שהעצירה נעשתה בהתאם לציפיות וההתחייבות של בעל מקור הזיהום.

י. בקרה על מערכת ה-FGRU

- 48. בהתאם לסעיף 9(א)(4) לטיוטת ההיתר, בעל מקור הפליטה יחזיק חדר בקרה להתרעה, בין השאר, במקרים של תקלה או פעולה לא תקינה במערכת ה-FGRU. אלא שלא קיימת חובה למסור לרכז איכות האוויר דיווח בזמן אמת בנוגע לתקלה כזו.
- 49. מערכת ה-FGRU היא מערכת קריטית למניעת זיהום. כך בכלל, וכך בפרט בזמן תקלה. חשיבותה של המערכת מצדיקה הטלת חובה למסור דיווח בזמן אמת. לפיכך, ככל שיינתן היתר הפליטה, נבקש שייקבע שתקלה במערכת ה-FGRU תדווח בזמן אמת בנוהל הדיווח הקיים לגבי חריגה בזיהום בשגרה או בתקלה.

יא. שמירת תיעוד

50. בהתאם לסעיפים 9(ג) ו-23(א) לטיוטת ההיתר, יש לשמור רישום מלא של הפרטים המפורטים באותם סעיפים למשך שלוש שנים בלבד. 51. בעידן שבו כל התיעוד נעשה באמצעים דיגיטליים, אין כל הצדקה לכך שהחובה לשמור את התיעוד תוגבל לשלוש שנים בלבד. קיימת חשיבות ממשית לשמירת התיעוד פרק זמן ממושך, שכן לקחי הפעלה וטיפול בזיהום מצריכים לעתים פרספקטיבה של עשור ויותר, ופעמים רבות בדיקות מתבצעות רק שנים לאחר קרות האירועים הרלוונטיים. לפיכך, נבקש שהיתר הפליטה, אם יינתן, יקבע כי הנתונים יישמרו לפרק זמן של 20 שנים לפחות.

יב. חובת דיווח

- 52. סעיף 24 מטיל על בעל ההיתר חובות דיווח שונות, אולם לא נקבע מנגנון, המבטיח שתוצאות הניטור הרציף יהיו נגישים וזמינים לציבור, כפי שנעשה, למיטב ידיעתנו, בהיתרי פליטה אחרים. נבקש שהיתר הפליטה, אם יינתן, יקבע מנגנון כאמור.
- 53. בנוסף, ככל שיינתן היתר פליטה, נבקש שייקבע בו, שתוצאות הניטור הרציף ידווחו באופן שוטף גם לאיגוד ערים לשמירת איכות הסביבה שרון-כרמל, וכי איגוד ערים יהיה שותף פעיל בתהליך הערכת השקלול או ביטול של חלקם בעת תקלה.

יג. יש להכין תכנית ניטור סביבתי לפני מתן ההיתר ולכלול אותה בהיתר

- 54. בהתאם לסעיף 21 לטיוטת ההיתר, בעל מקור הפליטה יפעל בהתאם להנחיות הממונה להקמת והפעלת תחנות ניטור. אלא שנוכח חשיבותה של תכנית הניטור, קיימת חשיבות לגיבוש התכנית כבר עתה, עוד לפני מתן ההיתר, ולהכללת תכנית הניטור בהיתר הפליטה.
- 55. עמדת מרשתנו היא שככל שיינתן היתר פליטה, היתר זה חייב לכלול כבר עתה תכנית, חלקה רציפה וחלקה תקופתית, ושבמסגרתה ייקבע, בין השאר, כמה תחנות ניטור יוקמו, היכן ימוקמו ואילו מזהמים ינוטרו. בין תקופתית, ושבמסגרתה ייקבע, בין השאר, כמה תכיבי ה-BTEX והפורמלדהיד, ויעקוב במיוחד אחר בנזן השאר, יש לקבוע כי הניטור הסביבתי יבקר את רכיבי ה-BTEX והפורמלדהיד, ויעקוב במיוחד אחר בנזן ותרכבותיו, TOC ו-NOX. כמו כן יש לדגום בה תקופתית מזהמים אורגנים אחרים במו פורמלדהיד.

יד. אין הצדקה להשחרת חלקים מן המסמכים של בעל ההיתר

- 56. סעיף 24(ז) לטיוטת היתר הפליטה קובע כי בעל ההיתר יוכל להשחיר חלקים מן הדיווחים שהוא מחויב למסור והמהווים, לפי טענתו, סוד מסחרי, כך שאלה לא ייחשפו בפני הציבור.
- 57. עמדת מרשתנו היא שאין מקום לבחון את ההצדקה להסתרת נתונים רק לאחר מתן היתר הפליטה. אנו מצפים שכבר עתה מבקש ההיתר יבהיר איזה מידע הוא לא מתכוון למסור, ומדוע, לשיטתו, מדובר בסוד מסחרי. יצוין שמעיון קפדני שלנו ושל מומחים מטעמנו בטיוטת ההיתר, אנו סבורים שאין כל הצדקה להשחיר נתונים כלשהם, שאמורים להיות מנוטרים מכוח טיוטת היתר הפליטה.
- 58. בהקשר זה יצוין, שכאשר גורם פרטי מקבל היתר פליטה שמשמעו היתר לזהם עליו להיות כפוף לבקרה ציבורית הדוקה. הפריבילגיה לזהם, הניתנת לבעל ההיתר, תוצאתה, בין היתר, שבעל היתר הפליטה צריך

להיות כפוף לכללים רחבים יותר מאלה החלים, ככלל, על גופים פרטיים, ככל שהדברים נוגעים לשקיפות. בהתאם, אנו סבורים שאין הצדקה להתיר השחרה של מידע שבעל ההיתר מחויב למסור.

טו. לוחות זמנים לביצוע

.59 סעיף 25(ב) לטיוטת ההיתר מאפשר דרגת חופש בלתי סבירה למקור הזיהום להגיש תכניות וליישמן באיחור. ככל שיינתן היתר פליטה, נבקש שייקבע כי הגשת התכניות, אישורן ויישומן יהיה טרם תחילת האתחול / פעולת האסדה.

טז. העדר פירוט אודות מכשור הבקרה והניטור

60. יכולת הבקרה על כמות ועל איכות הזיהום מושתתת על ציוד ניטור אמין, רגיש דיו ומותאם לנשוא המדידה. בהתאם, אנו מצפים שהמשרד להגנת הסביבה יידע ויפרסם במסגרת ההיתר באיזה מכשור ייעשה שימוש, מהו אופן הכיול המבוקר של המכשור, מה הם תנאי התחזוקה שלו, ולא פחות חשוב – מהי היתירות וסף הרגישות של המכשירים, על מנת להבטיח רצף מעקב אחר גורמי הסיכון.

יז. תקרת הפליטה של בנזן גבוהה מן הנדרש ומן הסביר

- 61. במסגרת ההשלמות לבקשה להיתר פליטה, מבקש ההיתר מידע אודות מספר דגימות של קונדנסט מן הבאר של מאגר לוויתן. בכל הדגימות קיים אחוז נמוך מאוד של בנזן (0.01%-0.02%).
- 62. למרות האמור, המשרד להגנת הסביבה בחר להיות "נדיב" עם מבקש ההיתר, ולאפשר לו פליטה של 157 ק"ג בנזן בשנה. חישוב זה מבוסס על 1.5% בנזן בקונדנסט, לפי נספח פרק 3-6 בבקשה להיתר פליטה. אין לכך הצדקה. ככל שמבקש ההיתר מצהיר שאחוז הבנזן הוא אכן כה נמוך, יש לקבוע תקרת פליטה של בנזן, שהוא כאמור חומר מסרטן ודאי, נמוכה משמעותית, המתאימה להצהרות החברה ביחס לאחוז הבנזן בקונדנסט.

יח. הבקשה להיתר פליטה אינה מספקת נתונים המאמתים את הסימולציה להרכב הדלקים

- $(53. \,$ בהתאם לסעיף $(53.)^2$ (ב)($(1)^2$ (לחוק אוויר נקי, על בקשה להיתר פליטה לפרט, בין היתר, את
- יי(ג) <u>החומרים שייעשה בהם שימוש במקור הפליטה,</u> <u>סוגם וכמותם,</u> ואלה המיוצרים בו, לרבות דלק ומקורות אנרגיה אחרים, וכן אופן ניצול החומרים ותוצרי הלוואי שלהם ;
- (ד) פירוט המזהמים שצפויים להיפלט ממקור הפליטה, סוגם וכמותם, לרבות במצבי הפעלה שונים ובתנאי הפעלה לא אופייניים, ובכלל זה התנעה וכיבוי של מיתקנים, דליפה, עצירות רגעיות והפסקת פעילות, והשפעתם הצפויה על הסביבה;"

64. כאמור בעמי 4 לחוות הדעת מטעם Ramboll, הבקשה להיתר הפליטה מפרטת, אמנם, את תוצאותיה של סימולציה, שלפי הנטען מראה מהו הרכב הדלק במתקן, ואף נטען בה שמדובר בדלק המתאים לבעירה, אולם לא צורפו מידע תומך או מסמכים כלשהם כלשהו לגבי סימולציית הרכב הגז:

"We note that the fuel gas system is designed to treat a number of waste gas streams. The request for emission permit includes a simulated composition of the fuel gas system, indicating that the fuel gas is suitable for combustion. However, no supporting information or backup documentation is provided for this simulated composition."

- 65. הדרישה בחוק אוויר נקי לפרט את סוגי החומרים שבהם ייעשה שימוש והמזהמים שייפלטו כוללת, מניה וביה, דרישת-משנה לפרט את הרכב החומרים ואת המידע התומך במסקנות הנוגעות לחומרים אלה. דרישת-משנה זו נגזרת, בין היתר, מתכליתו של חוק אוויר נקי, והיא מתחייבת נוכח עקרון הזהירות המונעת, שהוא אבן הראשה של החוק, כפי שעולה מסעיף המטרות שבו.
 - .66 העדר הפירוט האמור הוא חוסר מהותי ומשמעותי, ובהעדרו אין מקום ליתן היתר פליטה.

יט. הבקשה וטיוטת ההיתר אינן כוללות מידע לגבי כלל הפליטה שמקורה בכלי שינוע ימיים ואוויריים

- 67. כפי שכבר צוין, סעיף 18(ב)(1)(ד) מחייב פירוט המזהמים שצפויים להיפלט ממקור הפליטה, סוגם וכמותם.
- 68. החובה לפרט את כלל המזהמים, לרבות אלה הנגרמים בעקיפין, מעוגנת במפורש בתקנות אוויר נקי. בהתאם לתקנה 10(א)(1), יש לפרט בבקשה להיתר פליטה את "תיאור המיתקנים והפעילויות במקור הפליטה, ובכלל זה תהליכי ייצור, אחסון ושינוע, וכן איפיון כל מיתקן וכל פעילות" ובהתאם לתקנה 10(א)(3) יש לפרט את "רשימת חומרים הנפלטים או העשויים להיפלט מכל מיתקן ומכל פעילות". תקנה 10(א)(4) מחייבת לפרט את "תהליך יצירת כל מזהם, דרכי הטיפול בו ומקור פליטתו לאוויר".
- 69. יצוין שבמכתבכם מיום 23.6.2019, שבו התייחסתם לדו״ח Ramboll, נטען כי היתר הפליטה ניתן רק לאסדה, ואינו אמור להתייחס כלל לפעילות שהגדרתם כ״פעילות נלווית לאסדה, כגון צנרת הולכה ממנה ואליה, אניות שירות, מסוקים וכו״י. מדובר בתפיסה שגויה המנוגדת להוראות תקנה 10 הנ״ל, כפי שמפורט בסעיף 68 הנ״ל, המתייחסת במפורש לפעילות ״נלווית״ כמו אחסון ושינוע, ונוקטת במפורש במלים ״כל פעילות״.
- 70. אלא שבניגוד להוראות אלה, הבקשה להיתר פליטה וטיוטת ההיתר אינן מתייחסות לכלל מקורות הפליטה. הן מתעלמות מן המזהמים שייפלטו מן השימוש בכלי שיט וכלי שינוע אוויריים לצורך תפעול המתקן בכלל ושל המזהמים שייפלטו בשל שימוש במיכליות להעברת קונדנסט בפרט. דו״ח Ramboll עומד על כך שגם אם הזיהום שייפלט מכל אחד מאמצעי התחבורה הללו באופן אינדיבידואלי אינו בכמות גדולה, הרי שללא פירוט אודות מספר כלי השינוע, גודלם ותדירות השימוש בהם, אין דרך להעריך את ההיקף הפוטנציאלי של הזיהום שייפלט ממקורות אלה.

:ה: בעמי 6 לדוייח Ramboll נכתב בעניין זה:

"Support vessel activity has not been included in the request for emission permit. Support vessels could include marine vessels used to transport crew, barges used to transport crew and/or equipment, marine tankers, and helicopters. Individually these may not represent large sources of NOx, VOC, SOx, CO and HAPs, but without knowledge of support vessel activity (number of vessels, size, and frequency of visits) it is impossible to determine the potential magnitude of the collective emissions from these sources. In particular, Chapter 3-6 mentions that the platform is equipped for loading condensate to marine tankers but the emissions are not accounted for."

72. בשוקלו האם לתת היתר פליטה, על הממונה להעריך את הכמות הכוללת של פליטת מזהמים, שתיגרם על ידי כלל הפעילות במתקן. בהעדר נתונים לגבי הפליטה שתיגרם על ידי גורם זה, אין אפשרות להעריך ההיקף המלא שלפליטת מזהמים. מעבר לכך, כיוון שלא נמסרו נתונים בעניין זה, הממונה אינו יכול למלא את חובתו לקבוע בהיתר הוראות לעניין "מניעה וצמצום של פליטות מזהמים שלא דרך ארובה" (סעיף 22(ג)(1) לחוק אוויר נקי).

כ. הבקשה טיוטת ההיתר אינן כוללות מידע לגבי כלל פליטה שמקורה תהליך הטיפול ב"מי מוצר"

73. האמור ביחס לזיהום הנפלט מכלי שינוע ימיים ואוויריים נכון גם ביחס לפליטת מזהמים בתהליך הטיפול ביימי מוצריי. כפי שעולה מן האמור בעמי 6 לדוייח Ramboll, הבקשה להיתר פליטה אינה מתייחסת לכמות ולסוג המזהמים שייפלטו בתהליך זה, ואף אינה כוללת התייחסות לשאלה להיכן ינותבו הגזים שייפלטו בתהליך זה.

"Produced water treatment can produce VOC and HAPs emissions which need to be identified. Although concentrations of VOC in produced water can be low, the volume of water produced can result in significant emissions. The process diagrams in the request for emission permit do not indicate where emissions from produced water would be routed."

74. העדר התייחסות למקור פליטה זה אינו עולה בקנה אחד עם הוראות סעיף 18(ב)(1)(ד) לחוק אוויר נקי הנ"ל ועם הוראות תקנה 10, ואף אינו מאפשר לממונה לקבוע בהיתר הוראות לפי סעיף 22(ג)(1).

כא. הבקשה מתייחסת בצורה בלתי מפורטת ולא קונקרטית להרכב המזהמים שייפלטו

- 75. לא ניתן לתת היתר פליטה משקיימים חסרים מהותיים רבים והעדר קונקרטיזציה, שמשליכים על פוטנציאל החשיפה של הציבור ובד בבד על בריאותו ובטיחותו.
- 76. הנתונים ביחס להרכב המזהמים בבקשה להיתר אף אינם עומדים בתנאי סעיף 18(ב)(1)(ד) לחוק אוויר נקי, המחייבים פירוט המזהמים שצפויים להיפלט ממקור הפליטה, סוגם וכמותם, ובתנאי תקנה 10(א)(2), הדורשת

- לפרט בבקשה להיתר את ״רשימת חומרים המשמשים בכל מיתקן ובכל פעילות, ובכלל זה חומרי גלם, חומרי ביניים, תוצרי לוואי, וכן פירוט כמויות של כל חומר״.
- 77. ראשית, כפי שכבר ציינו, הרכב הקונדנסט שפורסם הוא תוצר ההפרדה הראשוני כפי שנוצר בזמן הטיפול בגז. אם תוצר זה עובר תהליכי ייצוב או אחרים שמביאים אותו לתצורת הרכב ותכונות אחרות (API אחר), הרי שתהליכם אלו כלל לא מפורטים בבקשת ההיתר. יתרה מזו, איננו מזהים בשרטוטי ההנדסיים תימוכין לכך. משמעות הדברים היא שיתכן ויש כאן פוטנציאל זיהום שלא נדון כלל.
- C1- בכל דגימה הועבר רק מידע על מרכיבי -C10+ properties of the liquid sample נוסף על כך, לא צוינו ה- C10 מרכיבי שהועברו הם 25% מהרכב הקונדנסט, בעוד הרכיבים שהועברו הם 5% בלבד. אין לתת C10 מרכיבי +C10 מהווים מעל 95% מהרכב הקונדנסט, בעוד הרכיבים שהועברו הם 5% בלבד. אין לתת היתר פליטה ללא פרסום של רכיבים אלה.
- 79. כמו כן, כפי שכבר ציינו, חלק ניכר מן הדגימות הועברו כשצוין לגביהן "Seal: none". נוכח העובדה שבדגימות לא חתומות ישנו חשש שמרכיבים מסוימים יתנדפו בטרם יגיעו למעבדה, הרכב הדגימות כפי שפורסם אינו משקף, בהכרח, את הרכבן טרם ההתנדפות.
- 80. העדרו של מידע זה מונע את האפשרות לשקול אם ראוי לתת במקרה זה היתר פליטה ואת האפשרות לקבוע תנאים מתאימים בהיתר הפליטה, כנדרש בסעיף 22 לחוק אוויר נקי. מידת הקונקרטיזציה של המידע שנמסר אינה מספקת, ואין בו – במיוחד נוכח הסכנות הבריאותיות הפוטנציאליות – כדי להצדיק מתן היתר פליטה.

כב. הבקשה וטיוטת ההיתר אינן מתייחסות להיקף הפליטה הנגרמת משינויי לחץ

- 21. מדוייח Ramboll עולה שאמנם חושבו בבקשה להיתר סוגים שונים של פליטות ממכליות, שנעשה בהם שימוש במסגרת תהליכי ההפקה, אך לא נעשה חישוב לפליטות הנגרמות כתוצאה מאירועי Flashing אירועים שבהם שינוי מהיר בלחצים ממכליות גורם לפליטה (ראו עמי 6-7 לדוייח).
- .82 חוסר זה עומד בניגוד להוראות סעיף 18(ב)(1)(ד) לחוק אוויר נקי, הדורש פירוט של הזיהום שייפלט לרבות בתנאי הפעלה לא אופייניים, וכן בניגוד להוראותיה השונות של תקנה 10 לתקנות אוויר נקי, הדורשת התייחסות למזהמים בכל פעילות.

כג. אי פירוט כל הפעילות המזהמת – התעלמות מזיהום שנגרם על ידי מנועי החירום

- 83. כאמור לעיל, בהתאם לתקנה 10(א)(3) יש לפרט את "רשימת חומרים הנפלטים או העשויים להיפלט מכל מיתקן.
 10 מוקנה 10(א)(א) מחייבת לפרט את "תהליך יצירת כל מזהם, דרכי הטיפול בו ומקור (ביועד מונים אלה לא רק ביחס למצבים אופייניים ושגרתיים, אלא פליטתו לאוויר". כאמור לעיל, קיימת חובה לפרט נתונים אלה לא רק ביחס למצבים אופייניים ושגרתיים, אלא גם ביחס למקרי חירום.
- .84 מדו״ח Ramboll עולה שבבקשה להיתר לא פורט מה הוא היקף הפליטות משני מנועי דיזל לחירום (עמ׳ 11). כאמור בדו״ח, גם בהעדר מקרי חירום יש להפעיל את מנועי החירום מעת לעת, מטעמי בטיחות. בהתאם היה

על מבקשי ההיתר לפרט את כל הנתונים ביחס לפליטות ממנועים אלה, ומשלא עשו כן, לא מתקיימים התנאים למתן היתר פליטה.

כד. טיוטת היתר הפליטה מנוגדת להוראות תמ"א 73/ח

- 85. בדברי ההסבר לתמייא 37/ח, שמכוחה מוקם המתקן, בסעיף 4.2.2 לתכנית, ובסעיף 4.9.2 לתכנית נקבע כי תקרת הטיפול בגז למתקן תהיה הספק שעתי של 2 מיליון מ״ק.
- -86. טיוטת היתר הפליטה מתירה טיפול בהספק של 2,100 מיליון רגל מעוקב ליום (MMSCF/d), שהם שווי ערך ל-59.465 מיליון מייק ליום, או 2.477 מיליון מייק לשעה. מדובר בחריגה משמעותית של כ-20% מן המותר בתכנית המתאר הארצית.
- 87. כידוע, מעמדה הנורמטיבי של תכנית שאושרה הוא כשל חיקוק (ראו, למשל, עע״מ 2775/01 **ויטנר נ׳ הוועדה** המקומית לתכנון ולבניה ״שרונים״, פ״ד ס(2) 230, פסקה 30). הוראות היתר הפליטה אינן יכולות לסתור על הוראות התמ״א. בהתאם, אין מקום לתת היתר פליטה המתיר את שנאסר על ידי התמ״א.

כה. הערות מקצועיות לטבלה א' לטיוטת ההיתר

pprox נוסף על האמור עד כה, להלן הערות מקצועיות, שגובשו על ידי מומחים מטעמנו, ביחס לאמור בטבלה איpprox

צרובות מחממים - 3060 -EAP ארובות

א. גזים מושבים מהמערכת הסגורה FGRU מתווספים לגזים מבארות ההפקה ומשמשים כחלק מהדלק לחימום. צפויים להיפלט בארובות מזהמים אורגניים ובתוכם בנזן. נבקשכם לדגום חומרים אלו בהתאם ל-T.A. Luft 2002 Group III (סעיף 5.2.7).

ארובות טורבינות גז ZZZ - 8680, 8680, 8680:

- א. ההספק הנומינאלי של הטורבינות הינו 58.6 MW
- עפייי נוהלי ניטור רציף של המשרד לארובות יש לקיימו במערכים שהספקם גדול מ-MW50. כמו כן ינוטרו ברציפות במקרים שכאלו המזהמים:
 - 1). חומר חלקיקי
 - 2). פחמן חד חמצני
 - 3). תחמוצת חנקן
 - 4).גופרית דו-חמצנית

נבקשכם להורות על ניטור רציף של כול ארבעת המזהמים ולא רק את תחמוצת החנקן.

:ZZZ-9020/9030/9080 – ארובות גנראטורים ליצור חשמל

א. צפויה פליטה של מזהמים המשתייכים ל-NMVOC. נבקשכם לדגום בארובות תקופתית את המזהמים הקשורים לקבוצה זו.

:HP - ZZZ-9100A/B לפיד

א. בעל מקור הזיהום נדרש למעקב אחרי ספיקה נפחית של גזי פליטה ונראות העשן בלבד. לא נקבע צורך למזהמים אפשריים כמו פחמן חד חמצני, תחמוצת החנקן ו- NMVOC. **נבקשכם לנטר מזהמים אלו.**

:LP - ZZZ-9140 לפיד

א. בעל מקור הזיהום נדרש למעקב אחרי ספיקה נפחית של גזי פליטה ונראות העשן בלבד. ללפיד זה NMVOC מועברים גזים ממערכת FGRU בזמן אחזקה ומצבי חרום. הלפיד מהווה מקור פליטה של

ובנזן. נבקשכם לבצוע דיגום (לפחות פעם בשנה) וניטור רציף במצבי חרום ותחזוקה של מתנול, בנזן, טולואן ואתיל בנזן.

- ב. אנו דורשים ביצוע ניטור רציף של מזהמים במצב תחזוקה ומצבי קיצון.
- ג. נבקשכם גם לבדוק את יעילות השריפה באמצעות ניטור רציף של הערך הקלורי של הגזים.

כו. סוף דבר

- 99. כמפורט לעיל, הבקשה להיתר וטיוטת היתר פליטה אינן עומדות בתנאי הדין הבסיסיים ביותר. הן אינן עומדת בהוראות חוק אוויר נקי והתקנות מכוחו, וסותרות את הוראות תמ״א 37/ח. בין השאר, הן אינן קונקרטיות דיין, אינן מתייחסות לחלק מן הרכיבים פולטי הזיהום במתקן, אינן מתייחסות באופן מספק לפליטה במקרים שאינם אופייניים או במקרי חירום, ואינן עולות בקנה אחד עם החובה להשתמש בטכניקה הזמינה המיטבית.
- 90. מעבר לכך, כפי שהוסבר, מתן היתר לייצור כה מורכב, שהוא ראשון מסוגו בישראל ובעל היקף עצום וכל זאת על בסיס הערכות וחישובים, שעל בסיסן נבנתה היפותזה, ומבלי שנקבע שלב יישומי מכין, הבודק את תוקפה של ההיפותזה ואת התממשותה הוא בלתי סביר בצורה קיצונית.
- 91. כפי שהודגש, גם קביעתן של מגבלות על פליטה, המבוססות על חישובים שאינם מביאים בחשבון פעילות לא אופיינית, ובכלל זה תחזוקה, תקלות, מקרי חירום ומקרי קיצון אחרים, והחרגתם של תרחישים אלה מן המגבלות על היקף וקצב הפליטה, הן בלתי סבירות בעליל.
- 92. נוכח הפוטנציאל הבריאותי המסוכן של פליטת חומרים מזהמים במתקן המטפל בכמות עצומה וחסרת תקדים של חומרים מסרטנים, קיימת חובה לבצע בחינה קפדנית במיוחד של הבקשה להיתר. חובה זו מועצמת בהינתן עקרון הזהירות המונעת, העומד בבסיס חוק אוויר נקי, וכן נוכח העובדה שבמסגרת אישור תמ"א 37/ח, לא ניתנה הדעת לשיקולים הבריאותיים הרלוונטיים, ולא נעשתה בדיקה בריאותית כלשהי. כפי שפורט לעיל, הבקשה להיתר אינה צולחת בחינה קפדנית כזו.
- 93. נוכח האמור, נבקש לדחות את הבקשה להיתר פליטה. יחד עם זאת, ככל שיוחלט ליתן היתר פליטה, נבקש להכניס בו את השינויים, שעליהם עמדנו בהערותינו. ללא שינויים אלה, התנאים בהיתר יהיו תנאים בלתי סבירים, שאינם מקיימים את עקרון הזהירות המונעת, והם מוטים בעליל לטובת בעל מקור הזיהום.
- 94. מיותר לציין שמרשתנו, המעצה המקומית זכרון יעקב, שומרת לעצמה את הזכות לנקוט בכל פעולה חוקית, ככל שיינתן היתר פליטה, שבו לא יבוצעו שינויים מתחייבים אלה.

בכבוד רב ובברכה,

יונתן ברמן, עועד

דייר רענן הר זהב, עוייד

<u>העתקים</u>

מר פאיז חנא, הממונה על המחוז, משרד הפנים מר שלמה כץ, מנהל מחוז חיפה, המשרד להגנת הסביבה דייר צור גלין, ראייג איכות אוויר ושינוי אקלים, המשרד להגנת הסביבה

גבי אנה פנס, רכזת איכות אויר מחוז חיפה, המשרד להגנת הסביבה

גב׳ שולי נזר, סמנכ״ל בכירה לתעשיות, המשרד להגנת הסביבה

נספח א

'נספח א

Prepared for:

Homeland Guards Box 4452 4 Ha-Shezif Street 30900 Zichron Yaacov Israel

Prepared by:

Amnon Bar-Ilan, Shari Libicki Ramboll US Corporation 7250 Redwood Blvd., Suite 105 Novato, California 94945

April 2019 1690010952

Leviathan Gas Platform Emission Permit Review

Contents

1.0	Intr	oduction	1
	1.1	Leviathan Platform Overview	1
	1.2	Emissions Permit Review	2
	1.3	Ramboll Company Profile	
2.0	Con	nments on the Request for Emission Permit	4
	2.1	Specific Comments	
	2.2	Comments on Quantitative Emissions	. 11
	2.3	Review of Offshore Platform Emissions in the Gulf of Mexico	. 12
3.0	Rep	orting Requirements in the U.S	.15
TAB	BLES		
Tabl	e 1.	Summary comparison of LDAR requirements for TCEQ 28VHP and NSPS Subpart 0000a (VVa).	8
Table	e 2.	Summary of Leviathan platform annual emissions	
Tabl	e 3.	List of data reporting requirements by equipment type in GOADS	
FIG	URE	S	
Figu	re 1.	Cumulative distribution of annual NOx emissions for offshore platforms in the Gulf of Mexico	
Figu	re 2.	Cumulative distribution of annual VOC emissions for offshore platforms in the Gulf of Mexico	е

i

1.0 Introduction

Noble Energy Inc. has proposed to build an offshore natural gas production platform in the Mediterranean Sea, located approximately 9.7 km west of the coast of Israel near the city of Haifa. The platform is designed to initially produce approximately 1,200 standard million cubic feet of natural gas per day (approximately 1.4 million cubic meters per hour) during Phase I of operation, with an additional 900 standard million cubic feet of natural gas per day (approximately 1 million cubic meters per hour) during Phase II of operation. In addition the platform will produce approximately 570 cubic meters per day of condensate during Phase I of operation, increasing to approximately 1,000 cubic meters per day of condensate during Phase II of operation. The proposed Leviathan platform will produce from the Leviathan Gas Field in the Mediterranean Basin, located 125 km east of Haifa and 35 km east of the "Tamar" gas field. The depth of the water is between 1600 -1750 meters.

Noble Energy submitted a "Request for Emission Permit" to the Israel Ministry of Environmental Protection in the fall of 2018, and subsequently submitted a revised Request for Emission Permit in January 2019. This report refers only to the revised Request for Emission Permit submitted in January 2019.

Homeland Guards, a non-profit organization based in Zichron Yaacov Israel, contracted with Ramboll Corp. to review the revised Request for Emission Permit and provide comments on the accuracy, completeness and reasonableness of the permit request.

1.1 Leviathan Platform Overview

The Leviathan Platform is proposed to be situated 9.7km east of the Israeli shore in the Mediterranean Sea, where the depth of the water is 86 meters. The platform will be constructed such that a jacket will be bolted into the sea floor, upon which the remainder of the platform will rest. The platform is proposed to be 9,216 m² in area, rising in three levels to an upper deck height of 57 m above sea level. The platform will consist of thermal power systems providing more than 50 megawatts of heat and electricity to power the platform and its associated systems. Processes on the platform will include separation of gas and liquids, drying and compression of natural gas, stabilization of condensate liquids, reclamation of venting/waste gas streams, treatment of produced water, and various systems to produce electricity, and transport of hazardous waste products. As noted above, the proposed project would initially produce approximately 1,200 standard million cubic feet of natural gas per day and 570 cubic meters of condensate per day in Phase I, rising to 2,100 standard million cubic feet of natural gas per day and 1,000 cubic meters of condensate per day in Phase II.

Emissions from the platform consist of combustion sources and venting/fugitive sources. Primary combustion sources include gas turbines for power and heat, heaters for separation and treatment, and flares/combustors for waste gas destruction. Primary venting/fugitive sources include fugitive emissions from pipeline components, venting from pipelines and from storage tanks. Emissions of NOx, VOC, SOx, and CO ("criteria pollutants") are expected, as well as emissions of hazardous air pollutants (HAPs) such as benzene. The primary focus of this review is on emissions of VOCs, although emissions of other pollutants are discussed.

1.2 Emissions Permit Review

Homeland Guards requested that Ramboll conduct a review of the request for emissions permit, with a focus on reviewing the reasonableness, accuracy and completeness of information in the permit with a focus on emissions of VOCs. Ramboll's review includes reviewing the facility and equipment list, schematics and flow diagrams of the operation of the facility, assumptions, inputs and modeling tools used to estimate emissions from facilities and equipment on the platform, and the quantitative estimates of these emissions themselves.

In conducting this review, Ramboll reviewed the following documents associated with the request for emission permit:

CH-1.docx Methanol Storage Vessel Emissions CH-2.docx 4Dec2018.pdf 2.1.6 Discharge Block Diagram.pdf TANKS SOFTWARE RESULTS.pdf 4501.5 - Expected Emissions Efficiency.pdf Form 3.1.2.1 NR.pdf LPP-TS-FDE-PRS-PFD-0050.pdf Form 3.1.2.2.pdf LPP-TS-FLP-MEC-DAS-4000.pdf Form 3.2.1.pdf LPP-TS-PER-PRS-DBK-0005.pdf Form 3.2.2 NR.pdf LPP-TS-PER-PRS-PFD-0010.pdf Form 3.2.3 NR.pdf LPP-TS-PER-PRS-PFD-0020.pdf Form 3.3 Condensate.pdf Form 2.1.1.pdf Form 3.3 Methanol.pdf Form 2.1.2.pdf Form 3.4.pdf Form 2.1.3.pdf Form 3.5.pdf Form 2.1.4.1 - NR.pdf Form 3.12 am.pdf Form 2.1.4.2.pdf BAT tables ENE BREF.pdf Form 2.1.4.3.pdf BAT tables ESB BREF.pdf Form 2.1.5.1 - NR.pdf BAT tables LCP BREF.pdf Form 2.1.5.2 – NR.pdf BAT tables REF BREF.pdf Form 2.1.6.1.pdf Leviathan Valve Standards Letter.pdf Form 2.1.6.2 – NR.pdf Summary table of standards.pdf Form 2.1.7 OD.pdf Form 4.3.1.pdf Form 2.1.7 PW.pdf Form 4.3.2.pdf Form 2.1.8.pdf CH7 (1).docx Form 2.1.9.1 - NR.pdf Form 2.1.4.2.xlsx Form 2.1.9.2.pdf Form 7.1.2.xlsx Form 7.1.4.1.xlsx Form 2.1.10.pdf Form 2.2.1.pdf Form 7.2.4.xlsx Form 2.2.2 – NR.pdf Form 7.2.6.xlsx Form 2.3.pdf Form 7.2.10.xlsx Chapter 3-6.docx Form 7.3.2 NO2.xlsx API-2516 Evaporation Loss from Low-Form 7.3.2 NOx.xlsx Pressure Tanks.pdf Form 7.3.2 PM.xlsx LEV - Benzene JAN2019.pdf Form 7.3.2 PM10.xlsx LPP-TS-FDE-PRS-RPT-0020 1-7.pdf Form 7.3.2 SO2.xlsx Form 7.3.3.xlsx

In addition, Ramboll reviewed CALPUFF dispersion modeling results for NO₂ (Hourly, Yearly, Max Yearly), NO_x (Hourly, Daily), PM10 (Daily, Yearly), SO₂ (Hourly, Daily, Yearly), and TSP (3-Hour, Daily, Yearly).

1.3 Ramboll Company Profile

Ramboll is a leading engineering, design and consultancy company employing 13,000 experts. Our presence is global with especially strong representation in the Nordics, UK, North America, Continental Europe, Middle East and Asia Pacific.

Ramboll's Environment & Health practice is globally recognized, with 2,100 expert who have earned a reputation for technical and scientific excellence, innovation, and client service. Advances in science and technology and evolving regulatory, legal and social pressures create increasingly complex challenges for Ramboll's clients. Ramboll evolves to keep pace with these changes – by adding new services, contributing to scientific advances and expanding geographically.

Ramboll offers a comprehensive array of air quality management services in the oil and gas sector, including facility-based services, strategic planning, and litigation support. Ramboll's principal and senior air sciences staff is internationally recognized in all areas relevant to comprehensive air quality practices. Senior staff members are supported by scientists and engineers with capabilities that encompass the entire range of air quality services.

Ramboll's project experience ranges from site-specific monitoring and permitting to regional-scale air quality modeling and evaluation of critical oil and gas industry air quality issues. These projects have provided the basis for facility permitting programs, worker safety evaluations and litigation. Ramboll's regional-scale air modeling efforts form a critical basis for the current understanding regarding potential air quality impacts associated with some of the more active unconventional oil and gas basins. Ramboll has performed recent basin wide assessments in the Haynesville, Eagleford and the Western Regional shale oil and gas producing basins. Ramboll has conducted a wide range of projects in the oil and gas industry, including:

- Ramboll staff participated in the development of an Exploration Plan & Environmental
 Impact Assessment, for Arctic offshore oil and gas development project. Staff was
 responsible for overall quality and control of draft EIA and EP, working as a team
 member with nationwide subject matter experts, facilitating preparation of the Draft
 EP and EIA, and conducting senior technical review. The work also included
 researching oil spill response logistics and techniques in remote arctic environment,
 and hazardous waste management options in remote camps and support vessels.
- Ramboll staff served in Program Management for the Alaska Pipeline Project, ExxonMobil Development Co. (EMDC) (2009-present). This 48-in. pipeline was proposed for export of Alaska North Slope natural gas from Prudhoe Bay through Canada to the Lower-48, or to tidewater Alaska for shipment as LNG. Staff served as Program Manager for Environmental & Regulatory Support Services for the Alaska portion of the pipeline. Staff was retained by EMDC to evaluate environmental study plans and to develop strategies for environmental permitting and compliance.
- Since 2009, Ramboll has provided technical support to Chesapeake Energy on a variety of air quality issues of importance to the industry. This work includes advising Chesapeake on how to model reciprocating internal combustion engines for comparison of impacts to the US 1-hour NO₂ ambient air quality standard.

2.0 Comments on the Request for Emission Permit

As noted above, Ramboll reviewed the request for emission permit from the standpoint of reasonableness of assumptions, accuracy and completeness. Ramboll also reviewed the overall quantitative emission inventory for the Leviathan platform in comparison to other major offshore platforms in the U.S. Gulf of Mexico. We first note specific comments on various aspects of the request for emission permit, and then discuss the overall platform emissions in the context of other major offshore oil and gas platforms.

2.1 Specific Comments

Specific comments on various aspects of the request for emission permit are summarized below. These comments are based on a review of the documents described in Section 1.2 above.

- 1. The provided process description and process diagrams, Chapter 2, included "LP Fuel Gas and LP Flare Systems" which describes the lines going to the fuel gas or flare system. We recommend the Ministry of Environmental Protection or other regulatory agency to closely monitor the Fuel Gas Recovery Unit system reliability. Although we have seen systems like this work for oil treatment systems, we have never seen them deployed for gas systems. This system is critical to the destruction of pollutants and the processing of waste gas throughout the life of the project; therefore, particularly during the initial phase of operation of the platform, it is recommended that such a system be instrumented to provide continuous monitoring of its operation and any upset conditions be addressed immediately. Upset conditions could include overpressurization of a vessel or a line, unlit or nonoperational flare, operational errors such as hatches left open, or other similar conditions. In the U.S. recent research has been focusing on these abnormal or upset conditions as a major source of emissions, and likely to drive the uneven distribution of emissions from well sites^{1,2,3}. We note that the fuel gas system is designed to treat a number of waste gas streams. The request for emission permit includes a simulated composition of the fuel gas system, indicating that the fuel gas is suitable for combustion. However, no supporting information or backup documentation is provided for this simulated composition. It is recommended that such documentation be provided to confirm the suitability of the fuel gas for combustion. In addition, once in operation the flare should be monitored as per
- ¹ Zavala-Araiza, D., et al. (2015), Reconciling divergent estimates of oil and gas methane emissions, Proceedings of the National Academy of Sciences, 112, 51, 15597-15602, doi: www.pnas.org/cgi/doi/10.1073/pnas.1522126112.
- ² Schade, G. W., and G. Roest (2016), Analysis of non-methane hydrocarbon data from a monitoring station affected by oil and gas development in the Eagle Ford shale, Texas, *Elem. Sci. Anth.*, 4, 000,096, doi:10.12952/journal.elementa.000096.
- ³ Lyon, D.R., et al. (2016), Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites, Environmental Science & Technology, 2016, 50, 4877-4886, doi: 10.1021/acs.est.6b00705.

- European Best Available Technology (BAT) requirements. These include monitoring of the mass flow rate and lower calorific value of the flare gas, and comparing of these measured values to the design requirements of the flare to guarantee the minimum combustion efficiency. The flare gas composition should be analyzed by periodic sampling, and records of this sampling taken and stored.
- 2. Maintenance, Startup and Shutdown (MSS) activity is increasingly being included in permits for oil and gas facilities in the U.S. MSS activities are not described in the request for emission permit, and we strongly recommend that such activities including pipeline, vessel and compressor blowdowns be included. Typically these types of MSS events are vented without routing to a control system, depending on the equipment type being vented, or the location of a piping component that needs to be removed. If not routed to a flaring or other control system, these would be considered "cold vents" and should be called out as such. These could include:
 - a. Recompressor No. 1/2/3 blowdown activities it is unclear from the description of processes in the request for emission permit where the gases and/or liquids are routed when blowing down any or all of the compressor stages. The request for emission permit should be revised to describe whether the gases and/or liquids are routed to lower pressure systems for recovery by pipeline, or whether the gases and/or liquids are routed to a flare for destruction.
 - b. <u>Line clearing and pigging</u> in Chapters 3-6, the request for emission permit explains that the well-to-platform and platform-to-shore pipelines will be purged with nitrogen prior to operational startup. However, no similar description is provided for pigging activities. It is recommended that the request for emission permit be revised to include nitrogen purging of the pig traps prior to pigging activities to eliminate VOC and HAP emissions from pigging activities. Gas and condensate pig launching activities are typically vented to atmosphere. It is important to identify where emissions from launching activities are routed, frequency of the activities (number of times per week or month), the size, pressure and temperature of the launcher. If not purged with nitrogen, there can be significant VOC and HAP emissions from pigging activities.
 - c. Other vessel blowdown activities it is unclear from the request for emission permit the frequency and types of other platform vessels that may need to be blown down for routine maintenance and cleaning. As noted above for pipeline components and pigging activities, vessel blowdowns may be significant VOC and HAP emissions sources.

We note that the request for emission permit estimates various volumes of possible release rates, but does not provide documentation on how these release rates were determined. There is insufficient information for us to verify the release rate described in the request for emission permit.

3. Flaring efficiency for the fuel gas system has been described in the request for emission permit as 99% which is not a control efficiency value used in permitting in the U.S. Flare destruction efficiency is typically cited as either 95% or 98%. EPA's AP-42 compendium of emission factors references 98% destruction efficiency: "Properly operated flares achieve at least 98% destruction efficiency in the flare plume, meaning that hydrocarbon emissions amount to less than 2 percent of the

hydrocarbons in the gas stream.⁴" In the state of Colorado, the Colorado Department of Public Health and the Environment (CDPHE) requires that sources control emissions with at least a 95% control efficiency: "Sources are required to control emissions under Section XVII with a least a 95% control efficiency but also to use a combustion device designed to have a destruction efficiency of 98%. Why does the Division distinguish between the two percentages? Sources are required to meet a 95% control efficiency. The division requires that the combustion device used be designed to have a 98% destruction efficiency, because it recognizes that combustion devices designed to meet a 98% control efficiency may not actually meet this percentage in practice, given the variability of field conditions, downtime, etc.⁵" We recommend that the request for emission permit use at most a 98% destruction efficiency for the flare, consistent with most U.S. permits.

- 4. Support vessel activity has not been included in the request for emission permit. Support vessels could include marine vessels used to transport crew, barges used to transport crew and/or equipment, marine tankers, and helicopters. Individually these may not represent large sources of NOx, VOC, SOx, CO and HAPs, but without knowledge of support vessel activity (number of vessels, size, and frequency of visits) it is impossible to determine the potential magnitude of the collective emissions from these sources. In particular, Chapter 3-6 mentions that the platform is equipped for loading condensate to marine tankers but the emissions are not accounted for. The process diagrams in the request for emission permit do not show any lines for vapor recovery coming from marine tanker loading. These emissions should be included as part of the emissions quantification in the request for emission permit. Marine tanker loading short-term emissions can be substantial for VOC and BTEX.
- 5. Produced water treatment can produce VOC and HAPs emissions which need to be identified. Although concentrations of VOC in produced water can be low, the volume of water produced can result in significant emissions. The process diagrams in the request for emission permit do not indicate where emissions from produced water would be routed.
- 6. Gas and liquid composition data provided in the request for emission permit are not sufficiently detailed for us to conduct a full analysis. More information, including the point of sampling, pressure, temperature, heat content of the gas, specific gravity of the gas, molecular weight of the gas and compressibility factor, and C10+ properties of the liquid sample would need to be provided for a full analysis. This is a requirement in the U.S. for sampling that is submitted as part of any emissions permit⁶. In addition, any sample submitted in the U.S. for an emission permit must also include the date of the sample and the sampling company and contact.
- 7. However, we note that the gas and liquid composition do not seem to agree with each other: a much heavier gas sample is expected for a liquid sample with greater than 90% C8+. Nevertheless, both samples show presence of VOCs and VOC emissions would be expected from any gas vented to atmosphere.
- 8. Miscellaneous tank emissions were calculated with the software model Tanks 4.0 for tanks only storing chemicals needing to be used in the process (e.g. nafta as demulsifier, and isopropyl alcohol as coagulant), but flashing emissions are not calculated for these tanks. Flashing emissions occur when a rapid change of

⁴ AP-42, Section 13.5 https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05 02-05-18.pdf

⁵ CDPHE https://www.colorado.gov/pacific/sites/default/files/AP-Memo-15-03-AirPollutionControlEquipment.pdf

⁶ See Appendix B, pages 6 and 7. https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/guidance_flashemission.pdf

- pressure is experienced by a semi-volatile liquid, in which volatile species may evolve out of the liquid phase and into the gas phase. If these tanks are being filled at near-atmospheric conditions, then flashing should not be much of a problem for nafta but could be for alcohol. There is no proposed control for these atmospheric tanks.
- 9. The request for emission permit indicates that no glycol-based dehydration system would be used. Rather the platform will use a turboexpander refrigeration system to separate light ends, methane and ethane, from natural gas liquids (NGL) such as propane and butane. The system may use a compressor to increase the pressure of the inlet stream through a choke valve (or simply use the high pressure of the whole system) and then allowing the gas to expand through a turbine. The resulting expansion moves the turbine converting energy to mechanical work and cools the gas selectively condensing NGLs. The methane and ethane would not condense and the overhead gas is sent for further treatment. Typically, such a system is used in a natural gas treatment plant on a high calorific stream (rich in C3+) gas stream to separate NGL from natural gas. Although some water is incidentally removed, it is not a primary technology for dehydration. We also note that the gas compositions provided in the request for emission permit do not indicate that the gas would be particularly suitable for the turboexpander refrigeration system, as the gas is mainly composed of methane.

In order for such a system to function properly, it is likely that the operator expects the gas to be dry (low water content) and dehydration is not required. This information should be confirmed by the Ministry of Environmental Protection upon startup of the project. If the gas is insufficiently dry for the use of a turboexpander refrigeration system as described, a dehydration system (either a glycol contact system or a molecular sieve) may be needed and emissions for such a system would need to be estimated. Note that a molecular sieve system is a closed system that does not generate continuous emissions.

- 10. The request for emission permit indicates that a number of large turbines will be used to provide power to the platform. We note that turbines for this purpose are meant to operate at a "sweet spot" of constant load. In the event that they are operated at a load substantially lower or higher than this normal load condition, substantially higher emissions of NOx can occur. The manufacturer test data will be very specific in mapping the NOx emissions as a function of load. It is difficult to know without seeing these specifications how high the NOx emissions can be.
- 11. Chapter 2 of the request for emission permit proposes to use TCEQ Method 28VHP instrument LDAR monitoring. USEPA standards would reference 40 CFR Part 60, Subpart OOOOa which references Subpart VVa, "Standards of Performance for Equipment Leaks of VOC in SOCMI." Table 1 below provides a summary comparison of the requirements of TCEO 28VHP and NSPS OOOOa (VVa).

Table 1. Summary comparison of LDAR requirements for TCEQ 28VHP and NSPS Subpart OOOOa (VVa).

	Service Type	Monitoring Frequency		Leak Definition (ppm)		Maintenance/Repair Requirements	
Equipment		NSPS OOOOa (VVa)	28VHP	NSPS 0000a (VVa)	28VHP	NSPS VVa & 0000a	28VHP
Compressors	GV	N/A	Quarterly ^a	N/A	2,000	Compressor are not an LDAR equipment type under NSPS OOOOa. They are regulated separately.	Under 28VHP, Periodic monitoring requirements do not apply to equipment where the VOC has an
Pumps	LL	Monthly M21 & Weekly Visual	Quarterly ^a	2,000	2,000	- For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - For visual inspection: monitor within 5 days to determine whether there is a leak OR designate the visual indications of liquid dripping as a leak.	aggregate partial pressure of less than 0.044 psia at 68°F (i.e., definition of "HL components" under NSPS regulations). For pumps, compressors, valves, or connectors emitting VOC in excess of their respective leak threshold OR found by visual inspection (e.g., dripping process fluids): - First attempt at repair within 5 days; and - Repaired within 15 days For pumps and compressors, seal systems designed and operated to prevent emissions or seals equipped with an automatic seal failure detection and alarm system need not be monitored.
	HL	N/A	N/A	10,000	2,000	- For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - For visual inspection: monitor within 5 days to determine whether there is a leak OR eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 days For HL equipment, no periodic monitoring required (see HL valves)	
Valves	GV LL	Monthly or Quarterly	Quarterly ^b	500 500	500 500	- Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - No requirements for visual indications of leaks	For pressure relief valves equipped with a rupture disc upstream or venting to a control device, they are not required to be monitored

	Comileo	Monitoring Frequency		Leak Definition (ppm)		Maintenance/Repair Requirements	
Equipment	Service Type	NSPS 0000a (VVa)	28VHP	NSPS 0000a (VVa)	28VHP	NSPS VVa & OOOOa	28VHP
	HL	N/A	N/A	10,000	500	- For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - For visual inspection: monitor within 5 days to determine whether there is a leak OR eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 days.	
Pressure Relief Valves	GV	Quarterly and within 5 days of pressure release event	Quarterly ^b	500	500	- For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - No requirements for visual indications of leaks	
	LL	N/A		10,000	500	- For M21 leak: 1st attempt at	
	HL	N/A	N/A	10,000	500	repair within 5 days and repair within 15 days - For visual inspection: monitor within 5 days to determine whether there is a leak OR eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 days.	
Connectors	GV	Within 12	Weekly	500	500	- For M21 leak: 1st attempt at	
(e.g., flanges)	LL	months of the compliance date and every 1-8 years thereafter	Visual ^c	500	500	repair within 5 days, repair within 15 days, and follow-up monitoring within 90 days of repair - No requirements for visual indications of leaks (except for inaccessible, ceramic, or ceramiclined connectors)	

	Service Type	Monitoring Frequency		Leak Definition (ppm)		Maintenance/Repair Requirements	
Equipment		NSPS 0000a (VVa)	28VHP	NSPS 0000a (VVa)	28VHP	NSPS VVa & OOOOa	28VHP
	HL	N/A		10,000	500	- For M21 leak: 1st attempt at repair within 5 days and repair within 15 days - For visual inspection: monitor within 5 days to determine whether there is a leak OR eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 days.	
Open-Ended Lines	All	N/A	N/A - No periodic monitoring unless certain conditions are met ^d	N/A	500	Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or second valve at all times except during operations requiring process fluid flow through the openended valve or line. Each openended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed.	If a cap, blind flange, plug, or second valve is not installed within 72 hours of creating an open-ended line: - Repair the open-ended line within 24 hours; or - Install a cap, blind flange, plug, or second valve.

 $[^]a$ Valves that begin operation must also be monitored within 30 days after the end of its startup period to ensure proper installation.

Install a cap, blind flange, plug, or second valve on the line within 72 hours; or

Monitor once for leaks for a plant/unit turnaround lasting up to 45 days. For all other scenarios, monitor once within 72 hours of creating the open-ended line and monthly thereafter.

^a Pumps and compressors must be equipped with a shaft sealing system that prevents or detects emissions of VOC from the seal.

^b Replacements for leaking valves shall be re-monitored within 15 days of being placed back into VOC service.

^c Connectors must also have pressure testing **OR** gas analyzer monitoring performed within 15 days for new or reworked piping connections.

^d If an open-ended line is created (e.g., during isolation of equipment for hot work or the removal of a component for repair which results in an open-ended line), the permittee must **either**:

- 12. Chapter 3-6 of the request for emission permit indicates that two emergency diesel generators would be on site for backup power. However, no emissions are assigned to these generators. For safety purposes, emergency generators must typically be operated for a specific number of hours per month or year to ensure they function adequately. It is recommended that combustion emissions associated with minimal safety firing of the emergency generators be included in the emissions totals for the platform.
- 13. Forms provided in Chapter 3 were reviewed for the accuracy of specific quantitative information:
 - a. Forms 3.1.2.2-1, 3.1.2.2-2, 3.1.2.2.-3 the "name of material" entry for different sources is "Nitrogen oxides (NOx/ NO₂)" and "Sulphur oxides (SOx/SO₂)" with the same emission rate. Different agencies provide different guidance for the ratios of NOx to NO₂ and SOx to o2. SOx would be 100% SO₂; however, NOx from combustion can be a mixture of NO and NO₂, of which only NO₂ has an established air quality standard (in the U.S.). We would suggest that the request for emission permit include the ratios of NO to NO₂ for specific combustion units based on manufacturer's specifications. The request for emission permit should specify what the ratios need to be per source as it can significantly impact predicted short-term ambient concentrations of NO₂.
 - b. Forms 3.1.2.2-2 and 3.1.2.2-3 and 3.5 we note that HAPs, specifically formaldehyde (HCHO), benzene, toluene, ethylbenzene, xylene (BTEX) and n-hexane, have not been speciated. Particular to gas-fired engines, HCHO is considered a HAP and can constitute 50% of the total engine VOC emissions. BTEX and n-hexane tend to be present in larger concentrations in gas treatment systems. USEPA designates a source as "major" for HAPs if any single HAP (like HCHO) equals or exceeds 10 tons per year. Based on current emission estimates of NMVOC from engines in the request for emission permit, the proposed project would exceed USEPA major source standards if 30% or more of NMVOC is HCHO. Therefore it is critical that the HAP speciation be indicated.
 - c. Form 3.3 C fugitive emissions have been updated in the January 2019 revised request for emission permit, relative to the earlier version released in fall 2018. However, we note that gas lines are still not included for fugitive emissions based on the documents "Leviathan Valve Standards Letter" and "LPP-T-FDE-PRS-RPT-0020 1-7" included in Appendix 14.

2.2 Comments on Quantitative Emissions

Specific comments on various aspects of the request for emission permit are summarized below. These comments Table 2 below summarizes the total emissions of criteria pollutants as provided in Form 3.5 in the request for emission permit.

Table 2. Summary of Leviathan platform annual emissions.

Pollutant	Annual Emissions	Units
Nitrogen Oxides (NOx/NO ₂)	422.56	metric ton/yr
Carbon monoxide (CO)	477.43	metric ton/yr
Dust or particulate matter (PM)	33.67	metric ton/yr
Sulfur oxides (SOx/SO ₂)	36.47	metric ton/yr
NMVOC	26.83	metric ton/yr

Emissions of NOx and CO would lead the facility to be considered a "major source" under USEPA designation, and would be subject to New Source Review (NSR)⁷ and Prevention of Significant Deterioration (PSD)⁸. If the platform were located in an attainment area in the U.S., the facility would have to undertake PSD review per 40 CFR 52.21. In addition, a project that is major for at least one criteria pollutant would be considered major for all criteria pollutants and would be subject to PSD review for those pollutants that exceed significant emission rates. In this case, the proposed Leviathan platform would trigger PSD review for all criteria pollutants. In this case, the project would require:

- Preconstruction monitoring of these pollutants;
- Implementation of Best Available Control Technology (BACT);
- Modeling demonstration that the project would not adversely impact National Ambient Air Quality Standards (NAAQS);
- Evaluation of Air Quality Related Values (AQRVs) such as pollutant deposition, and visibility impacts.

Finally, sources that are major for criteria pollutants would trigger PSD for greenhouse gases if the potential to emit exceeds 100,000 tons per year of carbon dioxide equivalent (CO_2e). This would require a Best Available Control Technology (BACT) evaluation for GHG emissions. Such an evaluation would include a thorough review of technology options for reducing emissions of GHGs, including aftertreatment systems, carbon capture systems, or other available technologies.

2.3 Review of Offshore Platform Emissions in the Gulf of Mexico

Ramboll conducted a review and summary of emissions from offshore platforms located in the Outer Continental Shelf (OCS) in the Gulf of Mexico. These platforms are permitted and monitored by the U.S. Bureau of Ocean Energy Management (BOEM). The emissions of the proposed Leviathan platform as disclosed in the request for emission permit were reviewed in the context of emissions from other offshore platforms in BOEM's GOADS database. Figure 1 shows the cumulative distribution of annual NOx emissions (tons per year) from individual platforms in the Gulf of Mexico, and Figure 2 shows the cumulative distribution of annual VOC emissions (tons per year) from these platforms.

⁷ https://www.epa.gov/nsr

⁸ https://www.epa.gov/nsr/prevention-significant-deterioration-basic-information

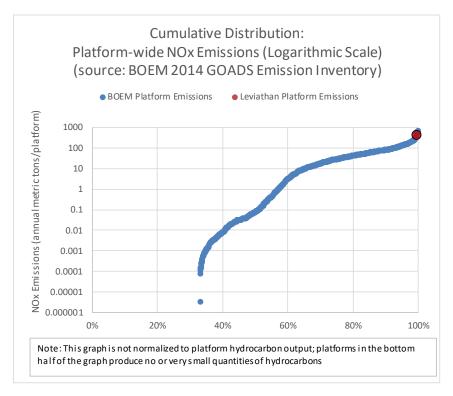


Figure 1. Cumulative distribution of annual NOx emissions for offshore platforms in the Gulf of Mexico.

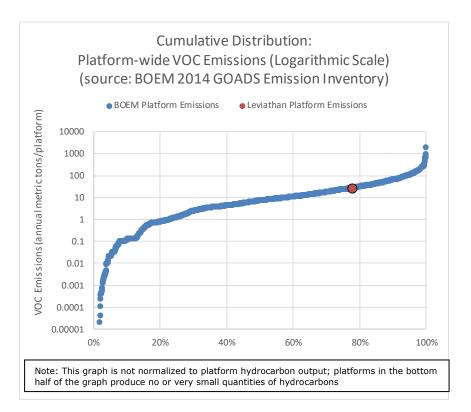


Figure 2. Cumulative distribution of annual VOC emissions for offshore platforms in the Gulf of Mexico.

Figure 1 suggests that the Leviathan platform would be near the very highest percentile for NOx emissions, similar to the less than 5% of the highest-emitting platforms in the Gulf of Mexico. By comparison, Figure 2 suggests that approximately 30% of platforms in the Gulf of Mexico would have higher VOC emissions than the Leviathan platform.

This suggests that NOx emissions from the Leviathan platform, as described in the request for emission permit, are similar to the largest, highest-emitting platforms in the U.S. Gulf of Mexico development area. Similarly, VOC emissions are comparable to the largest 30% of platforms in the Gulf of Mexico. Based on discussions with BOEM, the VOC emissions from the 70% of platforms below those of the Leviathan platform in the GOADS database are from platforms with very little gas production or that are otherwise out of operation or idled. This suggests that for a high gas production platform such as the Leviathan platform, much larger VOC emissions would be expected than those described in the request for emission permit. Some of the comments made in section 2.1 above, if addressed properly in the request for emission permit, would lead to an increase in the VOC emission inventory for the proposed platform. We also note that the control system proposed here is novel and its operation has not been demonstrated for such a large scale operation. As noted above, close monitoring of this system is strongly recommended, particularly in the initial phase of operation of the platform, to ensure that the control efficiency as described in the request for emission permit is actually achieved.

⁹ Personal communication – John Filostrat, BOEM Public Affairs, March 2019.

3.0 Reporting Requirements in the U.S.

At the request of Homeland Guards, Ramboll summarized the reporting requirements for offshore oil and gas platforms in the OCS in the Gulf of Mexico, subject to reporting to BOEM's GOADS system. GOADS is an electronic database which owners and operators of offshore oil and gas platforms in the OCS are required to use to report on activity and emissions from these platforms (including Noble Energy). BOEM has collected emission information related to offshore oil and gas operations to establish emission inventories for the Gulf of Mexico for calendar years 2000, 2005, 2008, 2011, 2014 and are currently collecting data for a 2017 emission inventory. GOADs is a calendar year survey program. Monthly surveys of air emissions-related activities that are associated with the platforms must be completed if new information is available. For example, if production or throughput volumes change from month to month, this new information is entered in each monthly survey. Parameters that remain constant do not need to be entered monthly. At the very least, GOADS tracks the following general data:

- General information about the company
- Structure information
 - o Structure ID
 - o BOEM complex ID
 - o Geographic area name
 - o Block number
 - o Latitude/longitude of the structure
 - Lease number
 - o Distance to shore
 - Water depth
 - Production data (volume of natural gas or oil products that were extracted at this structure during the specific survey period)
 - Throughput data (total volume of natural gas or oil products handled at the current structure during the survey period, including production volumes and volumes transferred by pipeline from another location)
 - o Fuel usage
- Sales gas composition
- Source category data requirements

For source categories, an extensive list of data is required for each structure. Table 3 below summarizes the basic data for each source category (more detailed information is available through the GOADS system):

Table 3. List of data reporting requirements by equipment type in GOADS.

	data reporting requireme		
Equipment No.	Equipment Type	Equipment Information	
1.	Amine Gas Sweetening	Processed throughput	Hours operated
	Unit	Unprocessed natural gas concentration (% by volume)	Amine type
		Equipped with a flash tank (y/n)	Disposition of flash gas
		Vented into low-	Gases vented or flared
2.	Boiler/heater/burner	presssure system Fuel type	Maximum rated
2.	Boilety Heatery Barrier	Hours operated	heat input Average heat
2	Diagol or gogolino ongino		input
3.	Diesel or gasoline engine	Fuel type	Maximum rated horsepower
		Hours operated	Operating horsepower
		Maximum rated fuel usage	Average fuel usage
4.	Drilling equipment	Hours operated	Total diesel fuel usage
		Total gasoline usage	Total natural gas fuel usage
5.	Combustion flare	Volume flared reported for	Continous pilot
		continuous and episodic flaring	
		Pilot fuel feed rate	
6.	Fugitives	Stream type (gas, heavy oil, light oil, or water/oil)	Average VOC weight %
		Number of components that handle the stream type	
7.	Glycol dehydrator unit	Processed throughput	Equipped with a flash tank (y/n)
		Disposition of flash gas	V.
8.	Loading operation	Volume loaded to ships and barges	Tank color
		Tank condition	
9.	Losses from flashing	Type of vessel	API gravity of stored oil
		Operating pressure of each vessel	Operating temperature of each vessel
		Operating pressure upstream of vessel	Operating temperature upstream of vessel
		Oil/condensate throughput for each vessel	Disposition of flash gas
10.	Natural gas engine	Engine stroke	Engine burn
ł	I	L	

Equipment No.	Equipment Type	Equipment Informati	on
		Hours operated	Maximum rated fuel usage
		Average fuel usage	
11.	Natural gas, diesel, or dual-fuel turbine	Hours operated	Operating horsepwoer
		Maximum rated fuel usage	Average fuel usage
12.	Mud degassing	Number of drilling days (with mud)	Mud type used (water-based, synthetic, oil- based)
13.	Pneumatic pumps	Manufacturer	Model
		Hour operated	
14.	Pneumatic controllers	Manufacturer	Model
		Bleed rate	Hours operated
		Service type	
15.	Storage tank	Product throughput	Product type
		Tank color	Tank condition
		Tank shape	Tank orientation
		Tank shell height	Tank shell diameter
		Tank shell width	Roof shape
		Roof height above shell	Equipped with a flash tank (y/n)
16.	Cold vent	Hours operated, including upsets Control device	Volume vented, including upsets Average vent feed
		identified	crage vent reed

As shown in Table 3, the reporting requirements in the GOADS system are extensive and include a number of categories (e.g. vessel loading at platforms, cold vents associated with upsets) that are not currently evaluated in the Leviathan request for emission permit.